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Problems
1. (a) Show that the change of variables specified

_95p. 0.0 - _ 951, T, 1)

=T T

is symplectic.

(b) Find a function S(p,,, Op41) in terms of which the map (7.15) is given by
6n = 05/0pn, Prs1 = 05/00,41.

2. Consider the following four-dimensional map (Ding ef al., 1990a),

Xng1 = 200, — DPxon — px%, + Yi,

DPx,n+1 = Xn,
Ynt1 = 28Yn — Pyn + 2XnYns
Pyn+1 = ¥Yn-

Is it volume preserving? Using Eq. (7.13) test to see whether the map is symplectic.

3. Consider a magnetic field in a plasma given by
B(x, y,z) = Bozo + V X A,

where By is a constant and the vector potential A is purely in the z-direction,
A = A(x, y, 2)zg. Denote the path followed by a field line as x(z) =
x(z)xXo + ¥(2)yo + zzo. Show that the equations for x(z) and y(z) are in the form of
Hamiltonian’s equations where z plays the role of time and A(x, y, z)/ By plays the
role of the Hamiltonian.

4. Consider the motion of a charged particle in an electrostatic wave field in which the

electric field is given by E(x, ) = Ex(x, £)Xo with
Efx, ) =Y By exp(icx — iof).
K0

(This situation arises in plasma physics where the wave field E; is due to collective
oscillations of the plasma.) In the special case where there is only one wavenumber,
Kk = *ko, the frequencies w form a discrete set, w = 2wn/T (where T is the
fundamental period and » is an integer; n=..., -2, —1,0, 1,2, ...), and the
amplitudes E,, are real and independent of w and x, E., = Eo/2, the above
expression for E, reduces to

E,(x, t) = Ecos(kox) Z exp(27int/T)
= Ej cos(kox) Z o(t — mT).

Show that the motion of a charged particle is described by a map which is of the
same form as the standard map Eq. (7.15).

5. Find the fixed points of the standard map (7.15) that lie in the strip 7 > p > —7.
Determine their stability as a function of K. In what range of K is there an elliptic
fixed point (assume K = 0)?
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6.

Write a computer program to iterate the standard map, Egs. (7.15).

(a) Plot p modulo 27 versus 6 for orbits with K = 1 and the following five initial
conditions, (6o, po) = (7, 7/5), (7, 47/5), (%, 67/5), (7, 87/5), (7, 27).

(b) For K =21 plot versus iterate number the average value of p? averaged
over 100 different initial conditions, (6y, py) = (2n7/11, 2mm/11) for n=
1,2,...,10and m =1, 2, ..., 10, and hence estimate the diffusion coefficient
D. How well does your numerical result agree with the quasilinear value Eq.
(7.42)?

The ‘sawtooth map’ is obtained from the standard map, Eqgs. (7.15), by replacing the

function, sin 6,4 in (7.15b) by the sawtooth function, saw 8, , where

0, for0<6<um,

SaweE{H—n, formr < 6 < 2m,

and saw 6 = saw (0 + 27). Show that the sawtooth map is an example of a C-
system if K > 0 or K < —2 and calculate the Lyapunov exponents.

A two-degree-of-freedom system has the following Hamiltonian in action-angle
variables, H(J1, J2, 61, 0,) = Ho(J1, J2) + €V (6;, 6,) where

o0
Ho(J1, J2) = ATy + QU V{6, 3) = cosby Y ¥,y exp(in6y),

n=-00

A and Q are constants, and ¢ is small.
(a) Obtain an expression for the trajectory J;(¢) to first order in €.
(b) Which tori in the phase space are destroyed by the perturbation?

(c) What does the KAM theorem tell us about the phase space for small €? Answer
in several complete sentences.

Notes

i

Additional useful material on chaos in Hamiltonian systems can be found in the
texts by Sagdeev et al. (1990), by Ozorio de Almeida (1988), by Lichtenberg and
Lierberman (1983) and by Arnold and Avez (1968), in the review articles by Berry
(1978), by Chirikov (1979) and by Helleman (1980), and in the reprint selection
edited by MacKay and Meiss (1987).

See books which cover the basic formulation and analysis of Hamiltonian mech-
anics, such as Ozorio de Almedia (1988) and Arnold (1978, 1982).

Our review in Section 7.1 is meant to refresh the memory, rather than to be a self-
contained first-principles exposition. Thus, the reader who wishes more detail or
clarification should refer to one of the texts cited above.?

If only k-independent relations of the form m- @ =0 hold with 1 <k < N — 1,

then orbits on the N-torus are (N — k)-frequency quasiperiodic and do not fill the
N-torus. Rather individual orbits fill (N — k)-tori which lie in the N-torus.

In the area preserving case, the areas of lobes bounded by stable and unstable
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manifold segments must be the same if these lobes map to each other under iteration
of the map. For example, consider one of the finger shaped areas bounded by stable
and unstable manifold segments in Figure 4.10(c). This area must be the same as the
areas of the regions shown in the figure to which it successively maps.

Long-time power law correlations of orbits have been observed numerically in two-
dimensional maps (Karney, 1983; Chirikov and Shepelyanski, 1984) and in higher-
dimensional systems (Ding et al., 1991a). This comes about due to the ‘stickiness’
of KAM surfaces: an orbit in a chaotic component which comes near a KAM
surface bounding that component tends to spend a longer time there, and this time is
typically longer the nearer the orbit comes. This behavior has been examined
theoretically using self-similar random walk models (Hanson et al., 1985; Meiss
and Ott, 1985). This type of behavior has also been shown to result in anomalous
diffusion wherein the average of the square of a map variable increases as n® with
a > 1 (in contrast to ordinary diffusive behavior where a = 1 as in Eq. (7.44)). See
Geisel et al. (1990), Zaslavski et al. (1989) and Ishizaki et al. (1991).

Note that near the peaks of the graph in Figure 7.17 it appears that the numerically
computed D values can be much larger than the analytical estimate. In fact, it was
subsequently found that D diverges to infinity in these regions, and the actual
behavior of (p?/2) is anomalous® in that (p?/2) ~ n® with a > 1. This behavior is
due to the presence of ‘accelerator modes’ in the range of K-values near the peaks
of the graph. Accelerator modes are small KAM island chains such that, when an
orbit originates in an island, it returns periodically to that island but is displaced in
p by an integer multiple of 27z. Hence, the orbit experiences a free acceleration,
p ~ n. Orbits in the large chaotic region can stick close to the outer bounding KAM
surfaces of these accelerator islands, thus leading to the above mentioned anomalous
behavior® (Ishizaki et al., 1991).

We note, however, that, if we consider the g times iterated map, then there may be
mixing regions in o for the map M9, since M4(0) = 0.
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